Substitution and Closure of Sets under Integer-Valued Polynomials
نویسنده
چکیده
Let R be a domain and K its quotient-field. For a subset S of K , let FR(S) be the set of polynomials f ∈ K[x] with f(S) ⊆ R and define the R -closure of S as the set of those t ∈ K for which f(t) ∈ R for all f ∈ FR(S). The concept of R -closure was introduced by McQuillan (J. Number Theory 39 (1991), 245–250), who gave a description in terms of closure in P -adic topology, when R is a Dedekind ring with finite residue fields. We introduce a toplogy related to, but weaker than P -adic topology, which allows us to treat ideals of infinite index, and derive a characterization of R -closure when R is a Krull ring. This gives us a criterion for FR(S) = FR(T ), where S and T are subsets of K . As a corollary we get a generalization to Krull rings of R. Gilmer’s result (J. Number Theory 33 (1989), 95–100) characterizing those subsets S of a Dedekind ring with finite residue fields for which FR(S) = FR(R).
منابع مشابه
Remarks on Polynomial Parametrization of Sets of Integer Points
If, for a subset S of Z, we compare the conditions of being parametrizable (a) by a single k-tuple of polynomials with integer coefficients, (b) by a single k-tuple of integer-valued polynomials and (c) by finitely many k-tuples of polynomials with integer coefficients (variables ranging through the integers in each case), then a ⇒ b (obviously), b ⇒ c, and neither implication is reversible. We...
متن کاملInteger-valued polynomial in valued fields with an application to discrete dynamical systems
Integer-valued polynomials on subsets of discrete valuation domains are well studied. We undertake here a systematical study of integer-valued polynomials on subsets S of valued fields and of several connected notions: the polynomial closure of S, the Bhargava’s factorial ideals of S and the v-orderings of S. A sequence of numbers is naturally associated to the subset S and a good description c...
متن کاملRelative Polynomial Closure and Monadically Krull Monoids of Integer-valued Polynomials
Let D be a Krull domain and Int(D) the ring of integer-valued polynomials on D. For any f ∈ Int(D), we explicitly construct a divisor homomorphism from [[f ]], the divisor-closed submonoid of Int(D) generated by f , to a finite sum of copies of (N0,+). This implies that [[f ]] is a Krull monoid. For V a discrete valuation domain, we give explicit divisor theories of various submonoids of Int(V ...
متن کاملGeneralized Rings of Integer-valued Polynomials
The classical ring of integer-valued polynomials Int(Z) consists of the polynomials in Q[X] that map Z into Z. We consider a generalization of integervalued polynomials where elements of Q[X] act on sets such as rings of algebraic integers or the ring of n× n matrices with entries in Z. The collection of polynomials thus produced is a subring of Int(Z), and the principal question we consider is...
متن کاملPolynomials That Kill Each Element of a Finite Ring
Given a finite (associative, unital) ring R, let K(R) denote the set of polynomials in R[x] that send each element of R to 0 under evaluation. We study K(R) and its elements. We conjecture that K(R) is a two-sided ideal of R[x] for any finite ring R, and prove the conjecture for several classes of finite rings (including commutative rings, semisimple rings, local rings, and all finite rings of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996